Study of field driven electroluminescence in colloidal quantum dot solids
نویسندگان
چکیده
منابع مشابه
Impact dynamics of colloidal quantum dot solids.
We use aerosol techniques to investigate the cohesive and granular properties of solids composed of colloidal semiconductor nanocrystals (quantum dot solids). We form spherical agglomerates of nanocrystals with a nebulizer and direct them toward a carbon substrate at low (~0.01 m/s) or high (~100 m/s) velocities. We then study the morphology of the deposit (i.e., the "splat") after impact. By v...
متن کاملHybrid passivated colloidal quantum dot solids.
Colloidal quantum dot (CQD) films allow large-area solution processing and bandgap tuning through the quantum size effect. However, the high ratio of surface area to volume makes CQD films prone to high trap state densities if surfaces are imperfectly passivated, promoting recombination of charge carriers that is detrimental to device performance. Recent advances have replaced the long insulati...
متن کاملHigh performance AC electroluminescence from colloidal quantum dot hybrids.
High performance field-induced AC electroluminescence (EL) in a simple ITO/insulator/hybrid emitter/Au structure was demonstrated with efficient control of the brightness and colors based on solution-processed nanohybrids of CdSe-ZnS core-shell colloidal quantum dots and fluorescent polymers.
متن کاملMicrosecond-sustained lasing from colloidal quantum dot solids
Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Physics
سال: 2012
ISSN: 0021-8979,1089-7550
DOI: 10.1063/1.4720377